The humanoid diving robot OceanOne seen during a presentation at the History Museum in Marseille, France, April 28, 2016. REUTERS/Jean-Paul Pelissier
Some really, really smart people at Stanford University have built human-like robot that they hope could one day revolutionize subsea exploration and other underwater tasks considered far too dangerous for human divers.
The humanoid robotic diver, named OceanOne, was presented Thursday at the History Museum in Marseille, where the OceanOne team announced the success of the robot’s maiden voyage to the wreck of La Lune, the flagship of King Louis XIV, which sank in 1664 in the Mediterranean about 20 miles off the southern coast of France.
In addition to exploring shipwrecks, the team is hoping that OceanOne could be developed to find work in disaster relief, ship repair, offshore oil and gas, and other areas of oceanographic research where the presence of actual human divers is considered too dangerous or impossible.
The appearance of OceanOne has been described as something like a robo-mermaid, measuring roughly five feet long with a long torso, head, and two fully articulated arms. The “tail” section houses batteries, computers and eight multi-directional thrusters. But the OceanOne team says it’s the hands that really set their robot apart from other submersibles:
Each fully articulated wrist is fitted with force sensors that relay haptic feedback to the pilot’s controls, so the human can feel whether the robot is grasping something firm and heavy, or light and delicate. (Eventually, each finger will be covered with tactile sensors.) The ‘bot’s brain also reads the data and makes sure that its hands keep a firm grip on objects, but that they don’t damage things by squeezing too tightly.
“You can feel exactly what the robot is doing,” said Oussama Khatib, a professor of computer science at Stanford who leading the OceanOne project. “It’s almost like you are there; with the sense of touch you create a new dimension of perception.”
The OceanOne is powered by artificial intelligence and haptic (touch) feedback systems, allowing human pilots to explore the deep ocean – at least deeper than humans are capable – in high fidelity. For the most part, the pilots won’t need to lift a finger, but at any point can take over the controls.
Sensors throughout the robot gauge current and turbulence, automatically activating the thrusters to keep the robot in place. And even as the body moves, quick-firing motors adjust the arms to keep its hands steady as it works. Navigation relies on perception of the environment, from both sensors and cameras, and these data run through smart algorithms that help OceanOne avoid collisions. If it senses that its thrusters won’t slow it down quickly enough, it can quickly brace for impact with its arms, an advantage of a humanoid body build.
Not only can the OceanOne robot take the place of humans, but it can also work side-by-side with other human divers, allowing the pilot to communicate by using hand gestures.
“We connect the human to the robot in very intuitive and meaningful way. The human can provide intuition and expertise and cognitive abilities to the robot,” Khatib said. “The two bring together an amazing synergy. The human and robot can do things in areas too dangerous for a human, while the human is still there.”
Several students played key roles in OceanOne’s success, including a handful of graduate students who joined Khatib in France for the expedition, as well as a number of undergraduate and graduate students. Khatib also drew on the expertise of Mark Cutkosky, a professor of mechanical engineering, for designing and building the robotic arms.
Next month, OceanOne will return to the campus of Stanford University in heart of California’s Silicon Valley, where Khatib and his students will continue to develop the platform. Right now the prototype robot is a lonely fleet of one, but Khatib hopes to build more units, which of course would work in concert in future tasks.
(Bloomberg) — Poland will propose a maritime policing program in the Baltic Sea similar to air-monitoring missions carried out by NATO members, Prime Minister Donald Tusk said on Wednesday. Tusk...
Sweden’s Navy completed a survey of the seabed near one of the damaged data cables in the Baltic Sea as the Nordic country investigates potential sabotage against the underwater infrastructure.
A Russian Navy frigate equipped with new generation hypersonic cruise missiles has conducted drills in the English Channel and is carrying out tasks in the Atlantic Ocean, Russian news agencies reported on Tuesday.
November 12, 2024
Total Views: 2402
Why Join the gCaptain Club?
Access exclusive insights, engage in vibrant discussions, and gain perspectives from our CEO.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.