The S.S. Eastland, the namesake of the “Eastland phenomena”: when well-intentioned efforts to enhance safety levels have unintentionally reduced safety levels.
What is the “Eastland Phenomena”?
by Dave Lochbaum (AllThingsNuclear) The sinking of the Titanicon her maiden voyage has been immortalized in countless books, articles, movies, and documentaries. Billions of people across the globe know about the luxury liner’s collision with an iceberg in the north Atlantic on April 14, 1912, on her way to New York City with the ensuing loss of 829 passengers and 694 crew members. The ship’s band playing while passengers gathered on deck to board lifeboats and the radio operator staying on duty tapping out SOS distress messages are legends. While the Titanic’s tragic encounter with an iceberg is widely known, her second sinking is virtually unknown.
Shortly after 7:00 am on the morning of Saturday, July 24, 1915, the gang planks on the steamship Eastland (Figure 2) were taken in after 2,501 passengers had boarded in Chicago for a day’s excursion across Lake Michgan to St. Joseph. With the Eastland still tied to the wharf on the south side of the Chicago River between LaSalle and Clark streets, she capsized. A total of 841 passengers—more than died when the Titanic sank in mid-ocean—and 3 crew members perished. Twenty-two entire families perished.
The Eastland can be considered the Titanic’s second sinking because had the Titanic not sunk, the Eastland very likely would not have capsized. Additional lifeboats, rafts, and davits installed to comply with the new Safety Of Life At Sea (SOLAS) laws in response to the Titanic disaster caused the Eastland to become more susceptible to capsizing. The added weight to the steamship’s upper decks reduced her ability to right herself in response to a list, or lean, to one side or the other.
On the morning of the disaster, the Eastland listed about 10 degrees towards the wharf as boarding passengers collected on that side of the steamship to communicate with friends yet to board. The crew corrected the list by admitting water to the ballast tanks on the steamship’s other side. As more passengers boarded, their more uniform distribution on the steamship caused her to list about ten degrees away from the wharf. The crew attempted to correct this list by reallocating water among the ballast tanks, but small-diameter piping limited how fast water could be transferred between tanks. The list increased until the Eastland rolled over onto her side. Figure 3 captured rescuers assisting survivors off the capsized vessel.
There are important lessons to be learned from both tragedies. The Titanic put to sea with more persons on board than could be accommodated in her lifeboats. If the ship sank, this shortfall meant that some would have to go down with her. To rectify that safety problem, the Eastland was retrofitted with lifeboat capacity for all persons on board. But fixing safety in one area made Eastland less safe in another.
The “Eastland phenomena” has also occurred at nuclear power plants. Well-intentioned efforts to enhance safety levels have unintentionally reduced safety levels. Two examples illustrate such outcomes. One involves the emergency core cooling systems (ECCS) for boiling water reactors (BWRs) and the other involves the ECCS for pressurized water reactors (PWRs).
In a quiet corner of the Pacific last August, a vessel unlike any other was making what many thought was its final voyage. R/P FLIP (Floating Instrument Platform), the U.S....
Wendover Production’s latest video, “How Inland Waterways Work,” the spotlight is on the often-overlooked yet vital network of U.S. inland waterways that power much of the economy. These rivers and...
Yachting World is reporting that while missiles rain down on oil tanekrs and major shipping companies divert billions in cargo away from the Bab-el-Mandeb Strait, a handful of brave, or...
October 20, 2024
Total Views: 2751
Why Join the gCaptain Club?
Access exclusive insights, engage in vibrant discussions, and gain perspectives from our CEO.
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.