Robojelly – Robotic Combat Jellyfish Of The Future

Total Views: 3
June 5, 2012

Virginia Tech College of Engineering researchers are working on U.S. Navy project dubbed Robojelly to put robot jellyfish in waters around the world.

The purpose of Robojelly is to better understand the fundamentals of nature’s own propulsion mechanisms, said Shashank Priya, associate professor of mechanical engineering and materials science at Virginia Tech, lead researcher on the Robojelly project. Future uses of the robot jellyfish could include conducting military surveillance, combat, cleaning oil spills, and monitoring the environment.

This isn’t science fiction. It’s happening now in a lab inside Virginia Tech’s Durham Hall, where a 600-gallon tank is regularly filled with water as small robotic jellyfish are tested for movement and energy self-creation and usage. A synthetic rubbery skin, squishy in one’s hand, mimics the sleek jellyfish skin and is placed over a bowl-shaped device covered in electronics. When moving, they look weirdly alive.

Similiar to sea crabs or mollusks, the RoboJelly is designed to operate on their own energy. “Jellyfish are attractive candidates to mimic because of their ability to consume little energy owing to a lower metabolic rate than other marine species, survivability in varying water conditions, and possession of adequate shape for carrying a payload,” Priya said. “They inhabit every major oceanic area of the world and are capable of withstanding a wide range of temperatures and in fresh and salt waters. Most species are found in shallow coastal waters, but some have been found in depths 7,000 meters below sea level.”


Several sizes of the RoboJelly are under development, one is about the size of a man’s hand, while the largest is more than five-foot wide Priya. He added that, in addition to a range of sizes, jellyfish display a wide variety of shapes and colors, and are able to move on their own vertically, but depend upon ocean currents for horizontal movement. With no central nervous system, jellyfish instead use a diffused nerve net to control movement and can complete complex functions. “So far, our focus has been using the experimental models to understand the fundamental principles of nature,” Priya said of the jellyfish.

The idea for a robotic jellyfish did not originate at Virginia Tech, but rather the U.S. Naval Undersea Warfare Center and the Office of Naval Research. Virginia Tech, is teaming with four U.S. universities on the multi-year, $5 million project: University of Texas at Dallas is handling nanotechnology based actuators and sensors; Providence College in Rhode Island is handling biological studies, University of California, Los Angeles, is handling electrostatic and optical sensing/controls, and Stanford University is overseeing chemical and pressure sensing. Virginia Tech is building the jellyfish body models, integrating fluid mechanics and developing control systems. Several other major U.S. universities and industries also are on the project, as well as collaborators and advisory board members.

Other entrepreneurial uses abound for the RoboJelly. “The robots could be used to study aquatic life, map ocean floors, monitor ocean currents, monitor water quality, [or to] monitor sharks,” said Alex Villanueva of St-Jacques, New-Brunswick, Canada, a doctoral student in mechanical engineering working under Priya. Other ideas: Detecting ocean pollutants, to, possibly, being used as clean-up filters during another oil spill similar to the Deepwater Horizon melee during the summer of 2010 in the Gulf of Mexico.

“The interesting part of the jellyfish research is that it is so open. No one had done research on a jellyfish vehicle to the extend we have. This allows for a lot of freedom and creativity in our design as opposed to optimization type of work which can be very boring,” said Villanueva.

Several more years of work remain on the project before any models are released for military reconnaissance or object-tracking operations, be it with cameras, sensors, or other devices.

Back to Main